
Reinforcement Learning on NHL Expected Goal Models in SuperTuxKart

Hubert Luo 1

Abstract

Applying key factors and lessons learned from
National Hockey League (NHL) expected goal
models to SuperTuxKart using reinforcement, im-
itation, and deep learning approaches via a state-
based agent.

1. Introduction
The state of quantitative analytics in professional hockey has
evolved significantly over the last few years, specifically in
the world’s top hockey league, the National Hockey League
(NHL). Early attempts involved looking at puck possession
metrics such as Corsi that focused on whether a player has
possession of the puck. Later models looked at scoring
chances and expected goals which evaluated what players
did with the puck once they had possession of it. (Goldman,
2021)

Although there are clear differences between hockey games
in real life and a SuperTuxKart hockey tournament, funda-
mental principles about puck possession and expected goals
translate well between the two environments and formed the
inspiration for this work.

2. Previous Work
Expected goal models such as Evolving-Hockey and Natu-
ralStatTrick based in the NHL found that the distance from
the puck to the net when taking a shot was consistently the
most important feature. Other important factors in these
NHL expected goal models included not only shot location,
but also player locations. (Goldman, 2021)

These factors were important considerations in data genera-
tion and feature engineering as outlined in sections 3.1 and
3.2

*Equal contribution 1Department of Computer Science, Univer-
sity of Texas at Austin.

Copyright 2023 by the author.

3. Method
A multi-step pipeline was created to first generate game
state data, then generate labels based on their expected goals,
engineer features based on a team’s state, and finally model
expected goal outcomes based on those features.

3.1. Data Generation

In order to generate data, AI models with added random
noise were played against each other. Game state data from
these matches were then collected and used for training.
1250 matches were played with an 80-20 training-validation
split, i.e., 1000 matches in training set and 250 in validation
set.

States from each match were then labelled based on an
expected goals metric. Motivated by NHL expected goal
metrics as explained earlier in sections 1 and 2, this metric
captured what conditions on the rink lead to goals for a
specific team.

The expected goals of a team right before they score a goal
was assigned a value of 1. On the other hand, a value of
-1 corresponds to the situation immediately prior to their
opponent scoring a goal.

An exponential decay was used to account for the fact that
events occurring in the timesteps immediately prior to the
goal are much more important than those that occurred at
the beginning of the game. Specifically, the formula used
was:

t = time until next goal ∈ Z≥0 (1)
a = 1next goal scorer (2)
y = expected goals (3)

= (2a− 1)e−
1
16 t (4)

Note that in the above formula, if the team was the next goal
scorer, a = 1 and thus y = e−

1
16 t However, if the opponent

is the next goal scorer, a = 0 and thus y = −e−
1
16 t. The

decay rate 1
16 was empirically derived to ensure the expected

goals measurement accurately captured sufficient pre-goal
data while also ignoring irrelevant states that occurred long
before the goal was scored.

H. Luo Reinforcement Learning on SuperTuxKart Expected Goals Page 2 of 4

3.2. Feature Engineering

Important features in NHL expected goal models involve the
distance from the puck to the net and player positions on the
ice relative to not only the puck but also to each other (Gold-
man, 2021). Therefore, similar features were engineered
based on available data from SuperTuxKart states.

First, the x/y coordinates of the goal, puck, player kart,
and closest opponent were calculated for each player. In
addition, the angle of the puck, kart, and closest opponent
were determined relative to both the player and to the puck.
Furthermore, we accounted for the distance from the kart
to the closest opponent and the distance between the puck
and the opposing goal. These engineered factors account for
the important spatial and positional factors found in NHL
expected goal models.

In conjunction, puck possession factors were created - for
example, if a player was close to the puck and no members
of the opposing team were nearby, that player was judged to
have possession of the puck. A similar feature was used to
designate opposing possession of the puck and a contested
puck, i.e., when one or more member of each team is in
close proximity to the puck.

In the NHL, one of the primary ways to create offense
is through rush chances when the attacking team quickly
moves the puck up the ice and catches the defence flat-
footed. This can be in the form of a breakaway, i.e., no
defender between the attacking player and the goalie, and an
odd-man rush. What this means is there are more attackers
than defenders between the attacking players and the goalie.

Figure 1. Example of a 3-on-1 rush chance. From Dallas Stars vs
Toronto Maple Leafs NHL game on October 20, 2022

For example, Figure 1 has three attacking players (Toronto
Maple Leafs in blue jerseys) while only one defender (Dal-
las Stars in white jerseys) between them and their goalie,
constituting a 3-on-1 rush. These rush chances are partic-
ularly challenging to defend given attacking players can
employ various passing mechanisms to pull the defender(s)
and goalie out of position and thus are more likely to score
a goal. Therefore, we account for these situations in our
model.

Table 1. Summary of Selected Features.

VARIABLE MEAN

PLAYER HAS POSSESSION 0.114
CONTESTED PUCK 0.268
DEFENDERS BETWEEN ATTACKERS 1.043
AND GOAL

A subset of engineered features and their distributions in the
training data collected in section 3.1 are in table 1, which
demonstrates that in 11.4% of all situations, a player has
possession of the puck while in 26.8% of situations, a puck
is contested. Odd-man rushes and breakaways were rela-
tively rare as in most cases there was at least one defender
between the attacker and the goal.

3.3. Expected Goals Model

A model that takes in a game state as input and predicts
the expected goals was necessary given we do not know a
priori what the true expected goals of a situation is. There-
fore, we designed a fully-connected neural network for this
prediction task.

The model’s architecture consists of three blocks which
each had a linear layer of dimension 64 paired with a ReLU
non-linearity. The network’s design was the result of exten-
sive hyperparameter tuning on the number of blocks, the
dimension of the linear layers, and the learning rate. The
best-performing model consisted of the above design along
with a learning rate of 0.01 with an ADAM optimizer and
a learning rate scheduler that decreased the learning rate
when the loss plateaued.

We experimented with dropout layers in various configura-
tions such as between blocks and prior to the final output,
however results did not seem to show considerable differ-
ence in performance and ability to generalize. Therefore,
we decided not to use dropout layers in the final output.

Training was performed on 8000 game states derived from
the training data generated in section 3.1. Likewise, for
validation, 1855 game states were used from the validation
data generated in section 3.1. Model results are outlined in
section 4.1.

3.4. Action Model and Match Expected Goals Metric

A kart’s action was determined by a neural network where
the input was the features described in section 3.2 and the
output was the kart’s acceleration, steering, and breaking.
We then ensured the action model’s output were applicable
to their given ranges using the below formulae:

H. Luo Reinforcement Learning on SuperTuxKart Expected Goals Page 3 of 4

z = action model output ∈ R3 (5)
acceleration = sigmoid(z0) ∈ [0, 1] (6)

steer = tanh(z1) ∈ [−1, 1] (7)
brake = 1z2>0 ∈ {0, 1} (8)

This action model was consistent throughout a match - there-
fore, we were motivated to create a match expected goals
metric to evaluate the effectiveness of an action model
throughout an entire match.

The intuition behind the match expected goals metric was
that we took the sum of the expected goals of a team’s player
who was most likely to score. This was because the position
of the other player was already considered as a feature in
the expected goals model. As mentioned earlier, we focused
on the most relevant game states closest to when the next
goal was scored in coming up with this metric to avoid
misleading predicted values of expected goals that did not
result in an actual goal. The match expected goals formula
for one team was:

N = number of time steps in a match (9)
ˆyt,i = predicted expected goals at time t for player i (10)
y = match expected goals for one team (11)

=

N∑
t=N−14

max(ˆyt,0, ˆyt,1) (12)

3.5. Gradient-Free Optimization

Our first approach was to use gradient-free optimization. A
different action model was rolled out for each match and a
Match Expected Goals metric was created to evaluate the
effectiveness of that model. First, the expected goals of each
game state in a match were predicted as we did not know a
priori what the true expected goals of that state were.

Each match was played until one team scored so we focused
on the most relevant game states that occurred at the end of
a match right before that goal was scored. We then rolled
out a different action model for each match and calculated
the match expected goals to evaluate that model’s effec-
tiveness using the methodology in section 3.4. This was
repeated across 100 epochs to find the action net with the
best initialization.

After finding a good initial action model, it was fine-tuned
using a random iterative searching procedure. Random
noise was added to the initial model weights and this altered
model was then rolled out in different matches to find the
model with the best match expected goals metric. This was

repeated across 200 iterations. See section 4.2 for detailed
results.

3.6. Imitation Learning

Our next approach was motivated by the idea of finding
a better initial action model - to do this, we leveraged the
existing AI model which was treated as an expert that we
imitated using a neural network.

The model’s architecture consisted of two blocks, one with a
linear layer of dimension 64 and another with a linear layer
of dimension 32, both paired with a ReLU non-linearity,
again derived after hyperparameter tuning. Tuning also
found that our best-performing model had a learning rate of
0.001 with an ADAM optimizer and a learning rate sched-
uler that decreased the learning rate when the loss plateaued.

After getting a good initial model from imitation learning,
we again fine-tuned it using a random iterative searching
procedure, adding random noise to the initial model weights
and rolling out the altered model across 200 iterations to
find the model with the best match expected goal metric.
See section 4.3 for detailed results.

4. Results
4.1. Expected Goal Model Results

A fully-connected neural network was used to predict the
expected goals given any game state. Motivation, method-
ology, and architecture were outlined previously in section
3.3.

Figure 2 shows the training and validation mean squared
error (MSE) on training and validation datasets. The x-axis
is the number of epochs and the y axis is the MSE value.
Training loss decreases steadily as the number of epochs
increase. On the other hand, the validation loss fluctuates.
As expected, the training loss is usually lower than the
validation loss.

4.2. Gradient-Free Optimization Results

Leveraging the methodology described in section 3.5, an
action net with a good initialization was first identified over
100 trials. This initial action net achieved a match expected
goals metric of 0.185, meaning it generally underperformed
the AI agent during matches.

However, fine-tuning through the random iterative search
outlined in section 3.5 across 200 iterations demonstrated
significant improvement in the best-performing action net,
which achieved a match expected goals metric of 1.747.

See table 2 for a summary of match expected goal met-
rics from a subset of trials, demonstrating the considerable

H. Luo Reinforcement Learning on SuperTuxKart Expected Goals Page 4 of 4

Figure 2. xG Model MSE on Training and Validation Datasets.

Table 2. Summary of Selected Gradient-Free Optimization Trials
and Imitation Learning.

MODEL MATCH XG

FINE-TUNED BEST MODEL 1.747
FINE-TUNED IMITATION LEARNING MODEL 1.116
IMITATION LEARNING MODEL 0.205
GOOD INITIALIZATION (TRIAL 61) 0.185
BAD INITIALIZATION (TRIAL 17) -1.180

improvement moving from a bad initialization to a good
initialization to the fine-tuned best model.

Potential reasons for why this model struggled were due
to the extensive search space of all possible actions, which
limited the usefulness of the match expected goals function
as a reward and also restricted our ability to search across
the whole space.

4.3. Imitation Learning Results

As outlined in section 3.6, a network was first trained to
imitate the existing AI agent as a good model initialization.
See figure 3 for the training and validation mean squared
error (MSE) on training and validation datasets. The x-axis
is the number of epochs and the y axis is the MSE value.
Training loss decreases steadily as the number of epochs
increase, however the validation loss fluctuates.

After a good initial model based on the AI agent was found,
a random iterative search as outlined in section 3.6 was
conducted. See table 2 for a summary of the match expected
goal metrics for both the imitation learning model as well
as the imitation learning model after fine-tuning.

While the imitation learning model outperformed the initial
good initialization outlined in section 4.2, the fine-tuned

Figure 3. Imitation Learning MSE on Training and Validation
Datasets.

imitation learning model underperformed the best model by
the match expected goals metric. This demonstrates there
may have been a local maxima around the imitation learning
model that prevented it from outperforming the best model
found in section 4.2.

As previously mentioned, this model may have likewise
struggled due to the extensive search space of all possible
states, limiting the usability of the match expected goals
metric as a reward function.

5. Conclusion
Recent NHL approaches looking at expected goals were eas-
ily applied to SuperTuxKart using reinforcement, deep, and
imitation learning approaches via a state-based agent. Al-
though promising, there were limitations in the applicability
given clear differences between the two environments.

References
Goldman, S. Comparing public expected goal models: How

they work and what we should take away from them. The
Athletic, 2021.

